

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ МОРСКОЙ УНИВЕРСИТЕТ ИМЕНИ АДМИРАЛА Ф.Ф.УШАКОВА»

ИНСТИТУТ ВОДНОГО ТРАНСПОРТА ИМЕНИ Г.Я.СЕДОВА

ДЕМОНСТРАТИВНЫЙ ВАРИАНТ ПО ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 1 час 20 минут. Работа состоит из 20 заданий, которые аналогичны тестовым заданиям ЕГЭ.

Ответом к заданию №1 является последовательность цифр, под которыми указаны правильные утверждения о физических явлениях, величинах и закономерностях. Цифры нужно записать (подряд, без пробелов) на бланке теста в столбце «Номер ответа» (например, 12 или 235).

К заданиям №2-19 дается 4 варианта ответа (1-4), из которых правильным является только один. Номер выбранного Вами варианта ответа нужно записать на бланке теста в столбце «Номер ответа» (например, 1).

Численный ответ, полученный Вами при выполнении задания №20, необходимо записать в столбце «Номер ответа». Подробное описание всего хода выполнения задания (задания с полным развернутым ответом и обоснованием выбранного решения) выполняется в отведенной в бланке теста ячейке «Решение:», можно воспользоваться черновиком.

Задания базового уровня сложности с выбором варианта ответа, оцениваются 2 баллами каждое при верно выбранном варианте ответа.

Задания повышенной сложности с выбором варианта ответа оцениваются 4 баллами при верно выбранном варианте ответа.

Задания высокой сложности с выбором варианта ответа оцениваются 8 баллами при условии правильного ответа.

Правильно выполненное задание №20 оценивается 16 баллами.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Внимательно прочитайте каждое задание и отвечайте только после того, как вы поняли вопрос и проанализировали имеющиеся варианты ответа.

Выполняйте задания в том порядке, в котором они даны. Если какое-то из заданий вызывает у Вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у Вас останется время.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Максимальное количество баллов за всё испытание – 100.

Минимальный балл, определяющий успешное прохождение вступительного испытания –36 баллов.

Желаем успеха!

СПРАВОЧНЫЕ МАТЕРИАЛЫ

Константы

Число π $\pi = 3,14$ Ускорение свободного падения $g = 9,8 \text{ m/c}^2$

Электрическая постоянная (коэффициент

пропорциональности в законе Кулона) $k = 9 \cdot 10^9 \text{ H} \cdot \text{м}^2/\text{K} \pi^2.$ Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}.$ Постоянная Планка $c = 3 \cdot 10^{-34} \text{ Дж} \cdot \text{c}.$

Соотношение между различными единицами

температура $0 \text{ K} = -273 ^{\circ}\text{C}$

атомная единица массы 1 а.е.м. = $1,66 \cdot 10^{-27}$ кг

1 атомная единица массы эквивалентна 931,5 МэВ

1 электрон-вольт 1 эB = 1,6·10⁻¹⁹ Дж

Плотно	сть	древесины (сосна)	400 кг/м ³	
подсолнечного масла	900 кг/м ³	железа	7800 кг/м ³	
воды	1000 kg/m^3	керосина	800 кг/м ³	
алюминия	2700 кг/м ³	ртути	13600 кг/м ³	

Удел	ьная теплоемкость	меди	380 Дж/(кг-К)
воды	4,2·10 ³ Дж/(кг·К)	железа	460 Дж/(кг·К)
алюминия	900 Дж/(кг К)	чугуна свинца	500 Дж/(кг·К) 130 Дж/(кг·К)
льда	2,1·10 ³ Дж/(кг·К)		,,,,

Удельная теплота

парообразования воды $2,3\cdot 10^6$ Дж/кг плавления свинца $2,5\cdot 10^4$ Дж/кг плавления льда $3,3\cdot 10^5$ Дж/кг

Нормальные условия: давление 10⁵ Па, температура 0°С

N	Іолярная масса	воздуха	29·10 ⁻³ кг/моль
азота	28·10 ⁻³ кг/моль	неона	20·10 ⁻³ кг/моль
кислорода	32·10 ⁻³ кг/моль	гелия	4·10 ⁻³ кг/моль
водорода	2.10-3 кг/моль	углекислого газа	44·10 ⁻³ кг/моль

Десятичные приставки

Наимено-	Обозначе-	Множи-	Обозначе-	Множи-		
вание	ние	тель	вание	ние	тель	
гига	Γ	10°	санти	С	10-2	
мега	M	10 ⁶	милли	M	10 ⁻³	
кило	К	10 ³	микро	MK	10 ⁻⁶	
гекто	Γ	10 ²	нано	н	10-9	
деци	д	10^{-1}	пико	п	10 ⁻¹²	

ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

№	задание										
	Выберите все верные утверждения о физических явлениях, величинах и										
	закономерностях. Запишите цифры, под которыми они указаны:										
	1) Атмосферное давление возрастает с высотой над поверхностью Земли.										
	2) При неизменной температуре нагревателя КПД идеальной тепловой машины										
1.	повышается с понижением температуры холодильника.										
	3) В процессе плавления постоянной массы вещества его внутренняя энергия уменьшается. 4) Период гармонических электромагнитных колебаний в идеальном контуре из катушки										
	индуктивности и воздушного конденсатора уменьшается при сближении пластин										
	индуктивности и воздушного конденсатора уменьшается при солижении пластин конденсатора.										
	 б) α-излучение отклоняется в магнитном поле. 										
	К концам длинного однородного проводника приложено напряжение <i>U</i> . Провод										
_	укоротили втрое и приложили к нему прежнее напряжение U . Как изменится при										
2.	этом сила тока?										
•	1) увеличится 2) уменьшится 3) не изменится										
	Электрическая цепь состоит из источника тока и телевизора. Источник тока										
	заменили на другой, у которого ЭДС осталось прежней, а внутреннее сопротивление										
3.	увеличилось. Как изменятся при замене источника тока напряжение на внешнем										
	сопротивлении?										
	1) увеличится 2) уменьшится 3) не изменится										
	Под действием постоянной силы за 2 с скорость тела массой 2 кг, движущегося по										
4.	прямой в одном направлении, изменилась на 6 м/с. Чему равен модуль силы? Ответ										
	дайте в Н.										
	1) 24 H 2) 1,5 H 3) 3 H 4) 6 H										
	Брусок массой $m = 2$ кг двигают с помощью силы F по										
	горизонтальной поверхности, при этом коэффициент трения $\vec{F} = 0.2$ до окупа $\vec{F} = 2.0$ Н марторудую под уптаму $\vec{F} = 6.0$ м										
5.	равен $\mu = 0.2$, а сила $F = 20$ Н направлена под углом $\alpha = 60^{\circ}$ к горизонту (см. рисунок). Определите работу силы F при										
٥.	перемещении бруска на расстояние S = 5 м. Ответ дайте в										
	Джоулях.										
	1) 25,5 ДЖ 2) 5 Дж 3) 50 ДЖ 4) 20 Дж										
	Координата тела при движении вдоль оси X меняется по закону $x = (4 + 3t) M$, где t -										
6.	время в секундах. За какое время тело проходит путь 12 м?										
	1) 4,5 c 2) 3,5 c 3) 4 c 4) 3 c										
	Теплоход проходит расстояние между двумя пунктами на реке вниз по течению за										
7.	60ч, а обратно - за 80ч. Сколько суток между этими пунктами плывут плоты?										
•	1) 18 2) 20 3) 8 4) 6										
	Если на вагонетку массой m, движущуюся по горизонтальным рельсам со										
8.	скоростью v, сверху вертикально опустить груз, масса которого равна половине										
0.	массы вагонетки, то скорость вагонетки с грузом станет равной										
	1) 3v/2 2) 2v 3) 3v/4 4) 2v/3										
	Из шахты глубиной 200 м равномерно поднимают груз массой 500 кг на канате,										
9.	масса каждого метра которого 1,5 кг. Какая работа при этом совершается?										
	1) 1,6 МДж 2) 1 МДж 3) 1003 кДж 4) 1,3 МДж										
	Как изменилась концентрация молекул в комнате при неизменном давлении, если										
10.	1 71										
	1) уменьшилась в 2 раза 2) увеличилась в 2 раза 3) не изменилась										
	Как изменилось давление идеального газа в тепловой машине, если его объем										
11.	7 1 1 1 1 1										
	1) уменьшилось в 2 раза 2) увеличилось в 2 раза 3) Не изменилось										

	Два одинаковых точечных заряда q вынули из жидкости с диэлектрической										
12.	12 проницаемостью є, не изменяя расстояние между н										
12.	заряд, чтобы сила взаимодействия осталась прежн										
	1) $q/\sqrt{\epsilon}$ 2) $q\cdot\sqrt{\epsilon}$ 3) q/ϵ										
	При последовательном соединении <i>п</i> источников тока										
	внутренними сопротивлениями r каждый, полный ток в	цепи с внешним сопротивлением R									
13.	13. будет равен										
	1) $I = \frac{\varepsilon}{R + mr}$ 2) $I = \frac{n\varepsilon}{R + mr}$ 3) $I = \frac{n\varepsilon}{R + mr}$	$=\frac{n\varepsilon}{R+r/n}$ 4 $I=\frac{\varepsilon}{R+r/n}$									
	R+nr $R+nr$										
1.4	В баллоне содержится 2 кг газа при температуре 1	°С. Какую массу газа следует									
14.	14. удалить из баллона, чтобы при нагревании до 27%										
	1) 0,33 г 2) 3,3 г 3) 33	\									
1.5	КПД идеального теплового двигателя равен 30%. Если температура нагревателя										
15.	15. равна 127°С, то температура холодильника равна										
		0 K 4) 400 K									
1.0	Какой путь проходит световой луч в воде с показ	телем преломления 4/3 за время,									
16.	16. равное 1 мкс?	122									
	, , , , , , , , , , , , , , , , , , , ,) м 4) 133 м									
	В идеальном колебательном контуре величина индуктивности катушки составляет										
17.	7. 0,25 мкГн. Какова должна быть емкость конденсатора, для того, чтобы принять										
	сигнал радиостанции, вещание которой происходи										
	, , , , , , , , , , , , , , , , , , , ,	MκΦ 4) 25 πΦ									
10	На поверхности океана длина волны достигает 300	м, а ее частота /3 мг ц. Скорость									
10.	18. распространения такой волны равна 1) 138 м/с 2) 430 м/с 3) 22	м/с 4) 46 м/с									
		, ,									
	Яхта, имеющая наибольшую ширину в поперечни	-									
19.	9. 100 км/ч перпендикулярно магнитному полю Земли 50 мкТл. Найти разность потенциалов на противоположных концах этого поперечника.										
		B MB 4) 0									
	Батарея ЭДС соединена с реостатом так, как пока										
	рисунке. Какова ЭДС батареи, если при силе тока выделяемая на реостате мощность $N_1 = 4$ Вт, а пр	_									
	5 А выделяемая на реостате мощность $N_1 = 4$ Вг, а пр										
	•	•									
	Решение:										
20.	20.										
		Ответ:									

Критерии оценивания ответов на контрольные вопросы экзаменационного теста по физике

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Всего
задания																					
Максимальное	4	4	4	4	4	4	4	4	8	2	2	2	2	8	4	4	8	4	8	16	100
количество																					
баллов																					

Ответы:

Номер вопроса	Ответ	Номер вопроса	Ответ
1	25	12	1
2	1	13	2
3	2	14	3
4	4	15	3
5	3	16	1
6	3	17	1
7	2	18	3
8	4	19	3
9	4	20	4,5 B
10	2		
11	1		

Пример оформления ответа на контрольное задание №20 и критерии оценивания

20. Батарея ЭДС соединена с реостатом так, как показано на рисунке. Какова ЭДС батареи, если при силе тока в цепи $I_1 = 1$ А выделяемая на реостате мощность $N_1 = 4$ Вт, а при силе тока $I_2 = 5$ А выделяемая на реостате мощность $N_2 = 10$ Вт?

<u>Решение:</u>

По закону Ома для полной цепи сила тока равна:

$$I = \frac{\xi}{R+r},$$

где ξ — ЭДС источника, R — сопротивление реостата, r — внутреннее сопротивление источника. Для первого и второго случая:

$$I_1 = \frac{\xi}{R_1 + r}$$

$$I_2 = \frac{\xi}{R_2 + r}$$

Отсюда ЭЛС:

$$\xi = I_1 R_1 + I_1 r = I_2 R_2 + I_2 r \quad (1)$$

Мощность равна:

$$N_1 = I_1^2 R_1$$

$$N_2 = I_2^2 R_2$$

Отсюда можно выразить R_1 и R_2

$$R_1 = \frac{N_1}{I_1^2} \quad R_2 = \frac{N_2}{I_2^2}.$$

Подставим в (1) и выразим r:

$$\frac{N_1}{I_1} + I_1 r = \frac{N_2}{I_2} + I_2 r \Rightarrow r = \frac{1}{I_2 - I_1} \left(\frac{N_1}{I_1} - \frac{N_2}{I_2} \right) = \frac{1}{5 \text{ A} - 1 \text{ A}} \left(\frac{4 \text{ BT}}{1 \text{ A}} - \frac{10 \text{ BT}}{5 \text{ A}} \right) = 0,5 \text{ OM}$$

Подставим r в (1)

$$\xi = I_1 R_1 + I_1 r = \frac{N_1}{I_1} + I_1 r = \frac{4 \text{ BT}}{1 \text{ A}} + 1 \text{ A} \cdot 0,5 \text{ Om} = 4,5 \text{ B}$$

Ответ: 4,5 В.

Критерии проверки

16 баллов ставится если:

Приведено полное правильное решение, включающее следующие элементы:

- 1) верно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении закон Ома для полной цепи, формула для мощности тока);
- 2) проведены необходимые математические преобразования и расчеты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу, и представлен ответ. При этом допускается решение «по частям» (с промежуточными вычислениями).
- 3) представлен правильный ответ с указанием единиц измерения искомой величины.

6-15 баллов ставится если:

Представленное решение содержит п. 1 полного решения, но и имеет один или несколько из следующих недостатков:

- в необходимых математических преобразованиях или вычислениях допущена ошибка;
- необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены;
- не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде;
- решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа.

1-5 баллов ставится если:

Представлены записи, соответствующие одному из следующих случаев:

- представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа;
- в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи;
- в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Во всех остальных случаях за задачу выставляется 0 баллов.